Catalytic, Enantioselective Sulfenylation of Ketone-Derived Enoxysilanes

نویسندگان

  • Scott E. Denmark
  • Sergio Rossi
  • Matthew P. Webster
  • Hao Wang
چکیده

A catalytic, enantioselective, Lewis base-catalyzed α-sulfenylation of silyl enol ethers has been developed. To avoid acidic hydrolysis of the silyl enol ether substrates, a sulfenylating agent that did not require additional Brønsted acid activation, namely N-phenylthiosaccharin, was developed. Three classes of Lewis bases-tertiary amines, sulfides, and selenophosphoramides-were identified as active catalysts for the α-sulfenylation reaction. Among a wide variety of chiral Lewis bases in all three classes, only chiral selenophosphoramides afforded α-phenylthio ketones in generally high yield and with good enantioselectivity. The selectivity of the reaction does not depend on the size of the silyl group but is highly sensitive to the double bond geometry and the bulk of the substituents on the double bond. The most selective substrates are those containing a geminal bulky substituent on the enoxysilane. Computational analysis revealed that the enantioselectivity arises from an intriguing interplay among sterically guided approach, distortion energy, and orbital interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic asymmetric sulfenylation to structurally diverse dithioketals.

We report the first example of the highly enantioselective synthesis of structurally diverse chiral dithioketals via asymmetric sulfenylation of various types of S-based nucleophiles, catalyzed by a cheap cinchona alkaloid derivative, dihydroquinine.

متن کامل

Three-component procedure for the synthesis of new chiral spirooxindolopyrrolizidines via catalytic highly enantioselective 1,3-dipolar cycloaddition

The catalytic highly regio-, diastereo-, and enantioselective synthesis of a small library of spiropyrrolizidineoxindolesvia a four-component 1,3-dipolar cycloaddition reaction of azomethine ylides, derived from isatin, with electron-deficient dipolarophilewas described. The process occurs at room temperature in aqueous ethanol as a green solvent and in the presence of a bidendatebis(imine)–Cu(...

متن کامل

Catalytic Enantioselective Alkylation of Prochiral Ketone Enolates

The synthesis of stereogenic all-carbon quaternary centers remains a formidable challenge, notwithstanding the strides made by modern organic chemistry in this regard [1]. Contemporary advances in enolate alkylation havemade it a fundamental strategy for the construction of C–C bonds [2]. Although methods for the reaction of a number of enolate types (e.g., ester, ketone, and propionimide) with...

متن کامل

Catalytic Enantioselective Synthesis of C 1‐ and C 2‐Symmetric Spirobiindanones through Counterion‐Directed Enolate C‐Acylation

A catalytic enantioselective route to C1 - and C2 -symmetric 2,2'-spirobiindanones has been realized through an intramolecular enolate C-acylation. This reaction employs a chiral ammonium counterion to direct the acylation of an in situ generated ketone enolate with a pentafluorophenyl ester. This reaction constitutes the first example of a direct catalytic enantioselective C-acylation of a ket...

متن کامل

Three-Component Procedure for the Synthesis Chiral Spirooxindolopyrrolizidines via Catalytic Highly Enantioselective 1,3-Dipolar Cycloaddition of Azomethineylides and 3-(2-Alkenoyl)-1,3-Oxazolidin-2-ones

The catalytic highly regio-, diastereo-, and enantioselective synthesis of a small library of spiropyrrolizidineoxindolesvia a four-component 1,3-dipolar cycloaddition reactionof azomethineylides, derived from isatin, with electron-deficient dipolarophilewas described. The process occurs at room temperature in aqueous ethanol as a green solvent and in the presence of a bidendatebis(imi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014